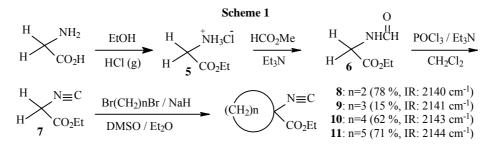
The Synthesis of Cyclic Amino Acids

Shrong Shi LIN*, Jing Yuan LIU, Jian Mei WANG

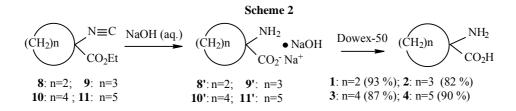

College of Chemical and Molecular Engineering, Peking University, Beijing 100871

Abstract: Several cyclic amino acids (1-4) were synthesized from glycine. Isocyanate ester was prepared as the key intermediate and reacted with dibromoalkanes to afford the target compounds.

Keywords: Cyclic amino acid, isocyanate ester, dibromoalkane, ion exchange resin.

Cyclic amino acids, having no α -hydrogen and with ring tension, might express certain properties that differ from regular α -amino acids. It is of great significance to understand the related chemistry and the preparation of cyclic amino acids. Among the cyclic amino acids, 1-aminocyclopropanecarboxylic acid (ACC, 1) is the most prominent one which was isolated from plant in 1957 and is known to convert to ethylene and ripen the fruits¹. Several routes have been proposed for the synthesis of ACC². In this paper, we report synthesis of several cyclic amino acids (1-4) using glycine as starting material.

As illustrated in **Scheme 1**, glycine was converted to the ethyl ester hydrochloride **5** and then converted to N-formyl ester **6** by refluxing 24 hours with methyl formate and triethylamine. The reaction was straightforward but required repeatedly removal of Et₃NHCl in purification process (yield 95 %, bp 180 °C / 1 mmHg). Dehydration of **6** to isocyanate ester **7** was performed by addition of POCl₃ (1.1 eq.) to the mixture of **6**, Et₃N and CH₂Cl₂ at low temperature (0-5 °C) and stirred 3 hours under the protection of argon. The product was obtained in satisfactory yield (88 %, 150 °C / 18 mmHg, light yellow oil) and was characterized by the pungent odor and strong CN band (2164 cm⁻¹) in IR. Cyclizations of **7** to **8-11** were the key reactions of this work which were



^{*} E-mail: sslin@pku.edu.cn

Shrong Shi LIN et al.

conducted by treating 7 with the corresponding dibromoalkanes using NaH as base and Et_2O -DMSO as solvent. Products 8-11 were obtained in fair yields (Scheme 2). The addition of DMSO (3 eq. relative to reactants) was noted to affect yields significantly.

Hydrolysis of cyclo isocyanate ester 8-11 to the corresponding cyclic amino acids 1-4 were carried out in aqueous NaOH. The occurring sodium salts of 8'-11' were transformed to the neutral form (1-4) by cationic ion-exchange resin (Dowex 50). The structures of 1-4 were confirmed by spectral data.

In summary, it was demonstrated that cyclic amino acids can be synthesized conveniently and effectively from glycine and various dibromoalkanes.

Acknowledgment

The authors are grateful to the National Natural Science Foundation of China (No. 20272001)

References and Notes

- 1. D. O. Adams, S. F. Yang, Proc. Natl. Acad. Sci., USA, 1979. 76, 170.
- 2. D. Kalvin, K. Ramalingam, R. W. Woodard, Synth. Comm., 1985, 15, 267.
- ¹H NMR (300 MHz, in D₂O if not specified, δppm) of 1: 1.27 (m, 2H, CH₂), 1.37 (m, 2H, CH₂). ¹H NMR of **2**: 1.40 (m, 2H, CH₃), 1.73 (t, 4H, J = 5.5 Hz, CH₂). ¹H NMR of **3**: 1.65 (t, 4H, J = 8.0 Hz, CH₂), 1.95 (t, 4H, J=7.5 Hz, CH₂); ¹H NMR of **4**: 1.25 (t, 2H, J = 8.5 Hz, CH₂), 1.60 (m, 4H, CH₂). 1.90 (t, 4H, J=10 Hz, 4H); ¹H NMR (CDCl₃) of **6**: 1.29 (t, 3H, J = 6.8Hz, CH₃), 4.07 (d, 2H, J = 5.4Hz, CH₂), 4.23 (q, 2H, J = 7.0Hz, CH₂), 6.85 (s, 1H, NH), 8.26 (s, 1H, CHO). ¹H NMR (CDCl₃) of **7**: 1.32 (t, 3H, J = 7.4 Hz, CH₃), 4.24 (s, 2H, CH₂), 4.23 (q, 2H, J = 7.4 Hz, CH₃), 4.24 (s, 2H, CH₂), 4.29 (q, 2H, J = 7.4 Hz, CH₂). ¹H NMR (CDCl₃) of **8**: 1.30 (t, 3H, J = 7.2Hz, CH₃), 1.53-1.61 (m, 4H, CH₂CH₂), 4.23 (q, 2H, J = 7.0 Hz, CH₂). ¹H NMR (CDCl₃) of **9**:: 1.32 (t, 3H, J = 7.2Hz, CH₃), 1.90 (t, 2H, CH₂), 2.10 (t, 4H, J=10Hz, CH₂), 4.25 (q, 2H, J = 7.0 Hz, CH₂).

Received 18 September, 2002